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ABSTRACT 

For a field K and a positive integer e let Ne(K) be the set of all e-tuples 
Q = (al . . . . .  ae)E G(K) ~ that generate a selfnormalizer closed subgroup of 
G(K). Chatzidakis proved, that i fK is Hilbertian and countable, then N,(K) 
has Haar measure 1. I fK is Hilbertian and uncountable, this need not be the 
case. Indeed, we prove that ifKo is a field of characteristic 0 that contains all 
roots of unity, T is a set of cardinality R~ which is algebraically independent 
over Ko and K = Ko(T), then neither N~(K) nor its complement contain a set 
of positive measure. In particular N,(K) is a nonmeasurable set. 

Introduction 

Our topic in this paper is the group-theoretic behavior of elements of the 
absolute Galois group of a Hilbertian field which are chosen at random. We 
continue the study that has been initiated in [ J] and extended by Chatzidakis 
[C]. Indeed our main results can be viewed as completing those of [C]. 

We denote the absolute Galois group of a field Kby G(K). Equip G(K) with 
the normalized Haar measure/z. For each positive integer e use/z also for the 
Haar measure of G(K)L Abbreviate an e-tuple (oh, . . . ,  at) of elements of 

G(K) by ~ and let (o') be the closed subgroup of G(K) generated by a l , . . . ,  ere. 
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Denote the fixed field of a in the algebraic c lo su re / (o fKby / ( ( a ) .  Let F~ be the 
free profinite group on e generators. 

THEOREM A (The free generators theorem [FJ, Thm. 16.13]). Let K be a 

Hilbertian field. Then ( a) _~ Fefor almost all aE  G(K)L 

Consider the centralizer C6trjC o') and the normalizer Nctx)Co) of Co) in 
G(K). Our main objects of investigation are the following subsets of G(K)e: 

C,(K) = G(K) I = Ca)} 

Ce(K) = {a E  G(Ky ] C~(K)(o') = 1}, e > 2, and 

Ne(K) = {aE  G(K) ~ I N~(x)C a) = Ca)}, e >_- 1. 

For Hilbertian fields there is a simple connection between Ce(K) and N~(K). 

LEMMA B. I fK is a Hilbertian field, then for each e >_- 1, Ne(K) is contained 
in Ce(K) up to a set of  measure O. 

PROOF. Consider a E  G(K) e such that Ca) --F~. It is well known that the 
center o f / ~  coincides with F~ if e = 1 but is trivial if e _-> 2 [FJ, Cor. 24.8]. 

Hence if aENe(K)  and Ca) ~ Fe, then a~Ce(K) .  Indeed, if z - ' a z  = a, then 
r ~ (a).  So z belongs to the center of Ca) which coincides with Ca) for e = 1 
and is trivial if e > 2. Thus Lemma B is a consequence of Theorem A. • 

The first result about Ce(K) (Theorem D) is valid for each K involved in 
Theorem C. 

THEOREM C. I f  K = Q or K = N(t), with N a real closed or algebraically 
closed field and t transcendental over N, then e very closed abelian subgroup oJ 
G(K) is procyclic. 

PROOF. See [G, Thin. 2.3] or JR, p. 306] for the case k = Q and Lemma 5.1 
for K = N(t). • 

THEOREM D ([J. Thm. 14.1]). Let K be a Hilbertian field. Suppose that 

every abelian closed subgroup of G(K) is procyclic. Then/~(C~(K)) = 1. 

Chatzidakis has proved a stronger theorem: 

THEOREM E (Chatzidakis [C, Thm. 2.2] or [FJ, 24.53]). I f K  is a countable 
Hilbertian field, then/t(N,(K)) = 1. Therefore, by Lemma B, #(C,(K)) = 1. 

It turns out that further generalization of Theorem E depends upon the roots 
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of unity which are contained in K. We denote the extension of a field F 
generated by all roots of unity by Fcyc. 

THEOREM F. Let K be a Hilbertian field with prime field F. I f  F~c • K is a 

finite extension o fF ,  then/Z(Ce(K)) = 1. 

THEOREM G (Main result). Let Ko be afield o f  characteristic 0 that contains 

all roots o f  unity. Take a set T o f  cardinality R1, algebraically independent over 

Ko and let K = Ko(T). Then neither Ne(K) nor Ce(K) nor their complements in 
G(K) ~ contain a set o f  positi ve measure. In particular neither N~(K) nor C~(K) 
is a meaurable set. 

Since K is Hilbertian this result shows that one cannot remove the hy- 

potheses of countability from Theorem E. 
In the last section we complete Theorem C: 

THEOREM H. Let K be a finitely generated extension o f  Q o f  transcendence 
degree n. 

(a) The rank o f  each closed abelian subgroup o f  G(K) is at most n + 1. 
(b) Z" +~ is isomorphic to a closed subgroup o f  G(K). 

Our results for the measure of the sets N~(K) and Ce(g)  over uncountable 
Hilbertian fields are incomplete in two ways: we deal entirely with purely 
transcendental extensions, and only in characteristic 0. 

1. Fields with only finitely many roots of unity 

A rather simple observation about fields with absolute Galois group isomor- 
phic to Zp X Zp leads in this section to the proof of Theorem F. For a positive 
integer n we denote the n-th root of unity by ~n- 

LEMMA 1.1 ([L2, p. 221]). Let K be a field and let n be an integer > 2. 

Assume for a E K, a ~ 0 that a q~ K p for each prime di visor p o f  n and that i f  
41 n, then a q~ - 4K 4. Then X ~ - a is irreducible in K[X]. 

LEMMA 1.2. Let K be afield with G(K) -~ Zp X Zp. Then char(K) ~ p and 

~p, E K  for every positive integer i. 

PROOF. Note first that char(K)# p, since otherwise G(K), as a pro-p 
group, would be projective and therefore free [R, p. 257] (a theorem of Witt). 
Every finite extension of K is an abelian p-group. Since [K(~p) : K] divides 
p - 1, we have ~p E K. 
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Assume for i >___ 2 that Cp' -~ E K but ~p, ~ K. Hence [K((p,) : K] = p (Lemma 
1.1). Since Z / p Z X Z / p Z  is a quotient of  ZpXZ~, there exists a cyclic 
extension K(a l/~,) of K, with a E K, of  degree p such that K(Cp') N K(a ~/~') = K. 
In particular a is not a p-th power in K( CoO. I fp  -- 2 and a ~ - 4K(C2,) 4, then 
v/-a E ~ 1K(C2,) 2 c_ K(C2,), a contradiction. Conclude from Lemma 1.1 that 
K(a ~/o,) is an abelian extension of  K of  degree p~ which is linearly disjoint from 
K(Co,). In particular K(a t/~') contains ~p,a t/°' and therefore also C~'. This 
contradiction proves that C~, ~ K, as asserted. • 

Consider now a Hilbertian field K such that 
(1) each of  the fields K ( x / -  1) and K(C~), p a prime and p ÷ char(K), 

contains only finitely many roots of unity. 
For example, ifQ~c N K is a finite extension of  Q, then K satisfies (1). Theorem 

F is therefore a consequence of  Propositions 1.3 and 1.4 below. 

PROPOSITION 1.3. Let K be a Hilbertian field that satisfies (1). Then 
/ t ( C , ( K ) ) - -  1. 

PROOF. For a prime p ÷ char(K) let Kp® = K(C# ] i = 1, 2, 3 . . . .  ). Also, let 
~ = Cp for p ~ 2 and ~2 = C4. By assumption, there exists a positive integer m 
such that Co" ~ K(~p) hut Cp.+, ~ K(~p). By Lemma 1.1, Cp- +' generates a cyclic 
extension of  K(~p) of degree p~, i = 1, 2, 3 . . . . .  Hence (~(K~./K(~p)) _~ Z o. 

The action of  ~(Kp./K) on the set { Cp, ] i = 1, 2, 3 . . . .  } defines an embed- 
ding of  (~(Kp. IK) into Z x . Recall that Z x ~--A ~ Zp, where A = Z/( p - 1)Z if 
p ÷ 2 and A = Z/2Z i fp  = 2. Therefore (~(KP'/K), being an infinite subgroup 
of  Z x , is isomorphic to a group A I • Zp with AI < A. (For p = 2 use that Z~ is a 
principal ideal domain and [L2, p. 393].) IfKp is the fixed field of  the subgroup 
A, of  ~(Kp./K), then ~(Kp/K) ~ Zp. 

As KJKis  an infinite extension the subset S~ = (.Jp ,,ch,~tX) G(Kp) of G(K) is of 
measure 0. By Theorem A, the set/ '2 of all a E G(K) such that (a )  ~ Z is of  
measure 1. By the bot tom theorem [FJ, p. 216], the set T3 of all aEG(K)  for 

which/~(a)  is a proper finite extension of  some field that contains K is of 

measure 0. It therefore suffices to prove that if 

o (G(K) - S,) n T2 n T3. 

then o commutes  with no element of  G(K) - (o). 
Assume that there exists x E G(K)  - (o)  such that or -- to. Then there is a 

prime p that divides [/~(o) : / ( (o ,  r)]. Let a be the element of  Z with p th  
coordinate ap = 1 and lth coordinate a~ = 0 for each prime I ÷ p. Then, since 
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o E/'3, the degree [/~(tr) : K(tr, x~)] is an infinite power ofp. As I~(o)/I((tr, ~0) 
is an abelian extension with Galois group generated by one element, that group 
is isomorphic to Zp. It follows that 

By the choice of a, G (/~( "t "a )) is a quotient of Zp. As each endomorphism of Zp is 
an automorphism [FJ, Prop. 15.3],/f(z')/('(tr) --/~ and 

G(R(tr, ~")) ~ G(R(r")) X G(R(a)) ~ Zp × Z. 

Conclude that G(K(tr a, r~)) ~-- Zp X Zp. 
By Lemma 1.2, p ~ char(K) and/('(tr', ~") contains ~p, for every positive 

integer i. Hence also/~(0 "a) contains (p, for all i and therefore Kp __. R(o~). 
However the degree [KpI((tr) :/~(tr)] as a divisor of [K(tr a) :/~(a)] is on the one 
hand relatively prime to p, and as a divisor of [Kp : K] is on the other hand a 
p-th power. It follows that Kp/~(tr) =/~(a) and therefore that Kp C_/f(tr). This 
contradiction to cr ~ S~ completes the proof of the Proposition. • 

Note that the assumption "K contains only finitely many roots of unity" does 
not imply (1). Indeed the theory of cyclotomic extensions asserts that 
G(Qp®/Q)~-A ~Zp,  where A = Z/(p - 1)Z i fp  ÷ 2 and A = Z/2Z i fp  = 2. 
Let K be the fixed field of A in Q f .  As ~(Qf/Q(~p)) ~ Zp the field Q(~p) is not 
contained in K. Moreover, since [Q(~p) : Q] ffi 1,41 we have K(~p) = Qp®. So, 
K(~p) contains infinitely many roots of unity. 

On the other hand the only roots of unity in Qp. are the + ~,'s. The field K 
contains only finitely many of them, since otherwise it would contain them all 
and therefore would coincide with Q f ,  a contradiction. Finally note that since 
~(K/Q) ~ Zp the field K is Hilbertian [FJ, Prop. 15.5]. 

PROPOSITION 1.4. Let K be a Hilbertian field that satisfies (1) and let e > 2. 
Then tt(Ce(K)) -- 1. 

PROOF. Let S be the set of all a~G(K)  e such that (o~) N (o2) -- 1 and 
C~x)(oi) -- (o,.), i ffi 1, 2. By [J, Thm. 5.1] (or as an easy consequence of 
Theorem A) and by Proposition 1.3 the set S has measure 1. 

Let o 'ES and let zECctx)((o')). Then z commutes with both o~ and o2. 
Conclude that T E (o~) N (o2) = 1. Thus C~tx)(o) -- (tr), as desired. • 
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2. Irreducible polynomials over rational function fields 

Hilbert's irreducibility theorem takes a strong form over rational function 
fields K = Ko(t): Separable irreducible polynomials f E K [ X ,  Y] in two vari- 
ables remain irreducible, if one variable is substituted by a + bt with (a, b) 
K~ arbitrary, satisfying only one inequality g(a, b) 4:0 [FJ, Thm. 12.9]. 

For the rest of this section we fix an infinite field K0 and set K = Ko(t). Define 
the rank of an infinite separable algebraic extension as the cardinality of the 
family of all finite subextensions. 

LEMMA 2.1. Consider a tower K c_ L c_ M o f  separable algebraic exten- 

sions with L / K  finite and rank(M/K) < I Kol. Let fl . . . . .  f,, be irreducible 

polynomials in M[XI, . . . , X ,  Y] separable in Y. Let gl, . . . , g, be irreducible 

polynomials in L[X~ . . . . .  X , Y ] ,  separable in Y, and let 0 4 : h ~  

M[X~, . . . , X~]. Then there exists x E K  ~ such that f ( x ,  Y) is separable irreduc- 

ible in M[Y],  i - - 1 , . . .  , m ,  gj(x, Y) is separable irreducible in L[Y], 

j = 1 . . . .  , n and h (x) ~ 0. 

PROOF. DO induction on r to assume that r = 1. Then follow the proof  of 
[FJ, Lemma 16.32], using that a separable Hilbert subset of a finite separable 
extension of K contains a separable Hilbert subset of K. (The proof  of  this 

statement is a simple modifiction of  the proof  of [FJ, Cor. 11.7].) • 

PROPOSITION 2.2. Let M be a separable algebraic extension o f  K with 

rank(M/K) < I Kol. Consider a finite Galois extension L o f  K with G = fa( L / K). 

Suppose that G acts on a finite abelian group A. Let A >~ G be the corresponding 

semidirect product and let a : A >~ G -" G be the projection map. Then there 

exists an epimorphism 7 : G(K)--,  A >~ G such that a o ~, = resL and the fixed 

field L o f  Ker(?) is linearly disjoint from M over ~ = M ¢q L.  

PROOF. Let F/E  be a Galois extension such that E = K(Xl,..., Xr) with 
xl , .  • . ,  xr algebraically independent  over K and F is a regular extension of L 

for which there is an isomorphism 0 : (a(F/E) ~ A  >~ G such that a o 0 = resL 
[FJ, Lemma 24.46]. For x = ( x i , . . .  ,xr) find rings R = K[x,g(x) -l] with 
0 ÷ g (x )~  K[x] and/~ = R [z] where/~ = E(z )  and the discriminant of z over 
E is a unit  o fR .  Then/~/R is a ring co vet. In particular/~ is the integral closure 
of  R in F [FJ, end of  §5.2]. Let f(x, Z)  = irr(z, E) and h(x, Z) = irr(z, L(x)). 
Since F/L  is regular h is absolutely irreducible. 

Now choose a ~ K "  such that g(a) 4: 0, f(a, Z)  is irreducible over K and 
h(a, Z)  is irreducible over M L  (Lemma 2.1). The K-specialization x ~ a  
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extends to an epimorphism ~ of/~ onto a Galois extension £ = K(~o(z)) of  K 

that contains L such that ~0(b.) = b for each b E L .  Since f(a, Z) is irreduc- 

ible over K it induces an isomorphism ~0": f ~ ( £ / K ) ~  fC(F/E) such that 

res:/L o ~* = rest/z [FJ, Lemma 5.5]. The map 7 = 0 o ~a* o rest: from G(K) 

satisfies a o 7 = rest. Also [£ : L] = deg(h(a, Z)) = [ME :ML]. Hence £ is 

linearly disjoint from M over L0. • 

3. Ne(K) is big 

In this section we assume that K0 is an uncountable field of  characteristic 0 

and let K = Ko(t) be the field of  rational functions in t over K0. Our goal is to 

show that for each e => 1 the complement of  N~(K) contains no set of  positive 

measure, i.e., Ne(K) is a "big" set. This will give one half of  Theorem G. The 

proof  is based on the following version of  [FJ, Lemma 16.30]. 

LEMMA 3.1. Let G be a profinite group and let S be a subset of  G ~. Suppose 

that gu(r(S)) = 1 for each epimorphism r : G ~ H onto a profinite group H of  

rank <= R0. (Here we also use r to denote the function from G e to H e induced by 

r : G - , H . )  Then G ~ - S contains no set of  positive measure. In particular this 

holds i f  r(S) = H~ for each H as above. 

PROOF. Let B be a meaurable subset of  G ~ - S. Then there exists a set B 

with B _ /~  such that g(B - B) = 0 which belongs to the a-algebra generated 

by all open-closed subsets of  G e [FJ, Lemma 16.29]. An induction on structure 

shows that B can be found in a a-algebra d generated by countably many 

open-closed sets, Al, A2, As . . . . .  For each i there is a normal open subgroup N~ 

of G and there is a finite subset T, of G e such that Ai = U,~r, cNe. The group 
cO 

N = ('li = l Ni is normal and closed in G and rank(G/N) <= R0. Let r : G --, G/N 

be the canonical epimorphism. Clearly r-i(r(Ai)) --Ai, i = l, 2, 3 , . . . .  Since 

the collection of all A E ~¢ with A = r-~(r(A)) is closed under taking comple- 

ments and under countable unions it coincides with ~¢. In particular 

r -  l ( r ( G e  - B)) =- G ~ - B. Since G e - -  B D_ S we have r(G ~ - B) D r(S) and 

gM(r(G e - B)) > laH(r(S)) = 1. Hence g(G ~ - B) = #n(r(G e - B)) = 1. Con- 

clude that/t(/~) = g ( B ) =  O, as desired. • 

Our first application of  Lemma 3. I depends upon the following corollary of  

Proposition 2.2. 

LEMMA 3.2. Let M be a Galois extension of  K with rank(M/K) ~ Ro and let 

ere ~ ( M / K )  e. Then K has a Galois extension M '  which contains M with 
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rank(f~(M'/K)) < Ro and there exists an extension 1rE fg(M'/K)" o f  o such that 

N~tu,/x)(¢ ) = (¢). 

PROOF. Present M as a union M = Ui:~ Ki of an ascending sequence 

K, _ K z C _ . . .  of  finite Galois extensions of K. Let o~ =resx,(o'), i = 

1, 2, 3, . . . .  Inductively construct an ascending sequence L l _ L 2 C_ • • • of 

finite Galois extensions of K and e-tuples ¢i E eS(Li/K)', i = 1, 2, 3 . . . .  such 

that 
(a) M n L~ = K~ and resx,(x~) = oi, 

(b) ¢~+1 extends ¢i, i = 1, 2, 3, . . . .  and 

(c) resL,(N.(z,÷,/x)(¢~ + 1 )) = ('ri ). 
Indeed suppose that we have already constructed L~ and -ci for i = 1 . . . . .  n 

such that they satisfy conditions (a)-(c). In particular for G = "-#(Kn + iLn/K) 

there exists p~_G" that extends both o'n+, and *n, and M n Kn+~Ln = Kn+,. 

Choose an integer m >_- 2 and let G operate on the group ring (Z/mZ)[G] by 

multiplication from the fight. By Proposition 2.2, K has a Galois extension 

Ln +, that contains Kn +,Ln such that M n L. +, = Kn + t and there exists a 

commutative diagram 

l-'C~(Ln+l/Kn+~Ln)-" ~(Ln+I/K) - ' ~ ( K n + t L J K ) - *  1 

II 
1 - .  (Z/mZ)[G] - ' (Z /mZ)[G]  ~1G-.  G - .  1 

in which the vertical arrows are isomorphisms. Lemma 24.52 of  [FJ] states 

that p extends to z. +, e. ~(Ln + i /K)  such that resx. + ,L. (N.(L. ÷ ,/K)( lrn +1)) = ( P ). 

(The close "H into Go" at the end of  that lemma should be corrected to "H onto 

Go".) In particular ,'. +, extends both on +, and l:n, and resL. (N.(L.+,/x)(¢n + I ) )  = 

(¢.) .  This completes the induction. 

Let M'  = U ~ ,  L~ and let ," be the unique element of Cg(M'/Ky that extends 

all ¢;. Then M'  is a Galois extension of K of rank _-< R0, ¢ extends o and 

N~(u,/x)('r) = (¢). Indeed if x~-N~(u,/x)(¢), then rest.+.(x)~_N.tt.+./x)(xn+~). 
Hence rest . (x)~ (¢,) ,  n = 1, 2, 3 , . . . .  Conclude that x~5 (¢). • 

LEMMA 3.3. Suppose that Ig01 = bll and let L / K  be a Galois extension o f  

rank < Ro. Then each o1 ~ ~ ( L / K y  extends to o E  G ( K y  such that No(x)(o) = 

(o). 

PgOOF. Order the collection of  all finite Galois extensions of K in a 

transfinite sequence {/(al l  < a <  R,}. Apply Lemma 3.2 in a transfinite 
induction to define for each ordinal a < ~l a Galois extension L.  and 
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ira ~ (~(La/K) e such that (a) L~ = L, (b) rank(L~/K) = Ro, (c) a < fl implies that 
Ka __ Lp, La C_ Lp and trp extends o-~, and (d) N~tL.m)(tr~) = (try). 

Then Ks = 1.3~<~, La and o = lim tr~ extends tr~ and satisfies Notr)(o) = (tr). 

PROPOSITION 3.4. Let K = Ko( t ) be the field o f  rational functions in t over a 
held Ko o f  cardinality R 1. Then G(K) e - Ne(K) and G(K) e - C,(K) contain no 

set o f  positive measure. 

PROOF. By Lemma B it suffices to prove only the assertion about N~(K). 
Apply Lemma 3.1 on the set S = N~(K). Consider a Galois extension L / K o f  

rank < R0. By Lemma 3.3, resL S = f~(L/K) e. Hence, G ~ - S contains no set of 

positive measure. • 

4. N~(K) is small 

We apply the technique of power series fields to complete the proof of 

Theorem G. 
Let K be a field of characteristic 0. For a transcendental element t over K 

choose for each positive integer e an e-th root t TM of t such that whenever d 
divides e, (tl/~) ejd = t TM. Puiseux's theorem states that the algebraic closure of 
the field of power series/~((t)) is the union of all fields E~ =/ ( ( ( t  tic)). In order 

to obtain the algebraic closure of the complete discrete valued field E = K((t)) 
we have to distinguish between unramified and purely ramified extensions. 
First note that each algebraic extension L of E is Henselian with residue field of 
characteristic 0. Therefore, i fL '  is a finite extension of L, then [L' : L] is equal 
to the product of the ramification index and the residue degree [A, Prop. 15]. 
Now observe that Eur = / ~ ,  as a separable constant field extension of E, is 
unramified with an algebraically closed residue field K. Hence, each algebraic 
extension of E.r is purely unramified. On the other hand, F = (.Je~ E(t  ~e) is a 
purely ramified extension of E with a divisible value group, Q. Hence, each 
algebraic extension of F is unramified. It follows that Eur N F = E and E~r F = 
/~. For each e the field E~r (t~e) is a cyclic extension of  E of  degree e. Therefore 
G(E~r) = Z. As Kis algebraically closed in E and therefore also in Fthis  yields a 
presentation of G(E) as a semidirect product of G(K) and Z. 

PROPOSITION 4.1. Let K be afield o f  characteristic 0 and let E = K((t)). 

(a) The field Fur = ~ is the maximal  unramified extension o f  E.  

(b) The field F =  Oe~l E(t  ~1~) is a totally unramified extension o f  E ,  
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ord(F ×) = Q, each algebraic extension o f F  is unramified, and K is algebrai- 

cally closed in F. 

(c) Fur f3 F = E and Eur F =/~. 
(d) G(E,~) = Z and G(F) ~ G(K). 
(e) G(E) is the semidirect product o f  G(K) and Z. 

COROLLARY 4.2. Let K be afield o f  characteristic 0 that contains all roots o] 

unity. 
(a) G(K((t))) -~ G(K) × Z,. 

(b) There exists an isomorphism a" G(K) × ~,---, G(K(t) N K((t))) such that 

rese o a is the projection map of  G(K) × Z onto G(K). 

PROOF. In this case F, of  Proposition 4.1, is a Galois extension of  E. • 

PROPOSITION 4.3. Let T be an uncountable set, algebraically independent 

over afield Ko of  characteristic 0 that contains all roots o f  unity. Let K = Ko( T). 
Then C e ( K  ) and N~(K) contain no set o f  positi ve measure. 

PROOF. By Lemma B it suffices to prove that Ce(K) contains no set of  

positive measure. We apply Lemma 3.1 on S = G(Ky - Ce(K) and consider 

an epimorphism r : G(K) ~ H onto a profinite group H of rank _< R0. Denote 

the fixed field of  Ker(r) by L. Then L / K  is a Galois extension of  rank < R0. 

Hence Thas a countable subset ?'1 for which there exists a Galois extension L, 

ofKi  = Ko(TO such that L,K = L. Choose t E T - TI and let K 2 = Ko(T - {t}) 

and L2 = LtK2. Then K = K2(t). Assume without loss that r is the epimorphism 

resL2 : G(K) ~ (q(L2/K2). 
By Corollary 4.2(b) each (rE f~(LJK2) e extends to 1rE G(Ky for which there 

exists p E G ( K ) -  (lr) such that zip =pzi, i = 1 . . . . .  e. Thus p EC~(K)(~) - 

(~'). Therefore 1rE S. 

Conclude from Lemma 3.1 that Ce(K) contains no set of  positive measure. • 

Combine now Propositions 3.4 and 4.3 to achieve the main result of  this 

work. 

THEOREM 4.4. Let Ko be afield o f  characteristic 0 that contains all roots of  
unity. Take a set T o f  cardinality R1, algebraically independent over Ko and let 
K = Ko(T). Then neither Ne(K) nor Ce(K) nor their complements in G(Ky 
contain a set o f  positive measure. In particular neither Ne(K) nor Ce(K) is a 
measurable set. 
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5. Abelian subgroups of G(K) 

We give in this section some details about the possible ranks of closed 
abelian subgroups of absolute Galois groups of finitely generated extensions of 
Q. First we prove the second part of Theorem C. 

LEMMA 5.1. Let N be either an algebraically closed or a real closed field. 
Let x be transcendental over N. Then every abelian closed subgroup C of 
G(N(x)) is procyclic. 

PROOF. Suppose first that N is algebraically closed. As the cohomological 

dimension of G(N) is 0, the cohomological dimension of G(N(x)) is 1 
[R, p. 276]. In other words G(N(x)) is projective. (Actually G(N(x)) is free. But 
this is a deeper theorem.) It follows that C is projective [FJ, Cor. 20.16]. 
Hence, for each p,  the p-Sylow subgroup C~ of C is pro-p-free [FJ, Prop. 
20.47]. Since Cp is abelian it must  be procyclic. Conclude that C is also 
procyclic. 

Now assume that N is real closed. If  C is not procyclic, it contains a closed 
subgroup B isomorphic to Zp × Zp, for some prime p [G, Satz 1.13]. By 
Lemma 1.2, the fixed field of B contains x / -  1 and therefore also ~'. This 

contradicts the first part of the Lemma. • 

PROPOSITION 5.2. For almost all tr~ G(Q) e each closed abelian subgroup C 
of G(O(a)(x)), with x transcendental over t)(o), is procyclic. 

PROOF. Each of the extensions Qp~ = Q((p, [i = 1, 2, 3 . . . .  ) is infinite. 
Hence/~(t,.)G(Q~) e) = 0. Let t r~  G e - G(Q,~) e and let F = O(tr)(x). Assume 
that C is a closed abelian nonprocyclic subgroup of  G(F). As in the second 
paragraph of the proof  of  Lemma 5.1, F and therefore 0(tr) contain (p,, 
i = 1, 2, 3 , . . .  for some prime p. Thus o '~ G(Qp~) e, a contradiction. • 

PROPOSITION 5.3 (Haran). Let K be an extension of Q of transcendence 
degree n. Then the rank of each closed abelian subgroup of G(K) is bounded by 
n + l .  

PROOF. If  n = 0, then K is an algebraic extension of  Q, and Theorem C 
applies. 

For n > 0 we may assume without loss that K = Ko(x) for some extension K0 
of  Q of transcendence degree n - 1 and a transcendental element x over Ko. 
Let B be a closed abelian closure of  G(K). The short exact sequence 
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1 , G( /~0(x ) )  , G ( K )  ~ ,  G(Ko) , 1 

induces a short exact sequence of  abelian profinite groups 1 ~ C ---B -0 A --- 1. 

The group A is contained in G(Ko). By an induction hypothesis on n, 

rank(A) < n. Lemma 5.1 asserts that C, as an abelian closed subgroup of 

G(/~0), is procyclic. Hence rank(B) < n + 1. This completes the induction and 

the proof of the proposition. • 

Now we show that the bound in Proposition 5.3 cannot be improved. 

PROPOSITION 5.4. Let K be a finitely generated extension of Q of transcen- 
dence degree n. Then ~n +1 is isomorphic to a closed subgroup of G(K). 

PROOF. The field L = QabK is finitely generated over Qab and of transcen- 

dence degree n. We prove by induction on n that l;n + ~ is even isomorphic to a 

closed subgroup of G(L). 
Indeed for n = 0, L = Qab is Hilbertian [FJ, Thin. 15.6]. Hence, by Theorem 

A, almost each aEG(L) generates a subgroup isomorphic to Z. For n > 0  

choose a transcendental basis tt, • • •, tn for L/Q~b and let E0 = Q~b ( t t , . . . ,  t~_ i) 

and E = Eo(t~). By the induction hypothesis Z~ is isomorphic to a closed 

subgroup of  G(Eo). Since E contains all roots of  unity Corollary 4.4(b) implies 

that Zn +1 is isomorphic to a closed subgroup of  G (E). As G(L) N A is an open 

subgroup of  A it is also isomorphic to Z~+~. The induction is complete. • 
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