ON THE NORMALIZER OF FINITELY GENERATED SUBGROUPS OF ABSOLUTE GALOIS GROUPS OF UNCOUNTABLE HILBERTIAN FIELDS OF CHARACTERISTIC 0

BY

WULF-DIETER GEYER⁴ AND MOSHE JARDEN^{b,†} *Mathematisches Institut der Universität, Bismarckstr. 1½, D-8520 Erlangen, FRG; and *School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

ABSTRACT

For a field K and a positive integer e let $N_e(K)$ be the set of all e-tuples $\sigma = (\sigma_1, \ldots, \sigma_e) \in G(K)^e$ that generate a selfnormalizer closed subgroup of G(K). Chatzidakis proved, that if K is Hilbertian and countable, then $N_e(K)$ has Haar measure 1. If K is Hilbertian and uncountable, this need not be the case. Indeed, we prove that if K_0 is a field of characteristic 0 that contains all roots of unity, T is a set of cardinality \aleph_1 which is algebraically independent over K_0 and $K = K_0(T)$, then neither $N_e(K)$ nor its complement contain a set of positive measure. In particular $N_e(K)$ is a nonmeasurable set.

Introduction

Our topic in this paper is the group-theoretic behavior of elements of the absolute Galois group of a Hilbertian field which are chosen at random. We continue the study that has been initiated in [J] and extended by Chatzidakis [C]. Indeed our main results can be viewed as completing those of [C].

We denote the absolute Galois group of a field K by G(K). Equip G(K) with the normalized Haar measure μ . For each positive integer e use μ also for the Haar measure of $G(K)^e$. Abbreviate an e-tuple $(\sigma_1, \ldots, \sigma_e)$ of elements of G(K) by σ and let $\langle \sigma \rangle$ be the closed subgroup of G(K) generated by $\sigma_1, \ldots, \sigma_e$.

[†] This work was partially supported by an NSF grant #DMS-H603187, while the second author enjoyed the hospitality of Rutgers University.

Received August 11, 1987 and in revised form June 14, 1988

Denote the fixed field of σ in the algebraic closure \tilde{K} of K by $\tilde{K}(\sigma)$. Let \hat{F}_e be the free profinite group on e generators.

THEOREM A (The free generators theorem [FJ, Thm. 16.13]). Let K be a Hilbertian field. Then $\langle \sigma \rangle \cong \hat{F}_e$ for almost all $\sigma \in G(K)^e$.

Consider the centralizer $C_{G(K)}(\sigma)$ and the normalizer $N_{G(K)}(\sigma)$ of $\langle \sigma \rangle$ in G(K). Our main objects of investigation are the following subsets of $G(K)^e$:

$$C_{1}(K) = \{ \sigma \in G(K) \mid C_{G(K)}(\sigma) = \langle \sigma \rangle \}$$

$$C_{e}(K) = \{ \sigma \in G(K)^{e} \mid C_{G(K)}(\sigma) = 1 \}, \quad e \ge 2, \quad and$$

$$N_{e}(K) = \{ \sigma \in G(K)^{e} \mid N_{G(K)}(\sigma) = \langle \sigma \rangle \}, \quad e \ge 1.$$

For Hilbertian fields there is a simple connection between $C_e(K)$ and $N_e(K)$.

LEMMA B. If K is a Hilbertian field, then for each $e \ge 1$, $N_e(K)$ is contained in $C_e(K)$ up to a set of measure 0.

PROOF. Consider $\sigma \in G(K)^e$ such that $\langle \sigma \rangle \cong \hat{F}_e$. It is well known that the center of \hat{F}_e coincides with \hat{F}_e if e = 1 but is trivial if $e \ge 2$ [FJ, Cor. 24.8]. Hence if $\sigma \in N_e(K)$ and $\langle \sigma \rangle \cong \hat{F}_e$, then $\sigma \in C_e(K)$. Indeed, if $\tau^{-1}\sigma\tau = \sigma$, then $\tau \in \langle \sigma \rangle$. So τ belongs to the center of $\langle \sigma \rangle$ which coincides with $\langle \sigma \rangle$ for e = 1 and is trivial if $e \ge 2$. Thus Lemma B is a consequence of Theorem A.

The first result about $C_e(K)$ (Theorem D) is valid for each K involved in Theorem C.

THEOREM C. If $K = \mathbf{Q}$ or K = N(t), with N a real closed or algebraically closed field and t transcendental over N, then every closed abelian subgroup of G(K) is procyclic.

PROOF. See [G, Thm. 2.3] or [R, p. 306] for the case $k = \mathbf{Q}$ and Lemma 5.1 for K = N(t).

THEOREM D ([J. Thm. 14.1]). Let K be a Hilbertian field. Suppose that every abelian closed subgroup of G(K) is procyclic. Then $\mu(C_e(K)) = 1$.

Chatzidakis has proved a stronger theorem:

THEOREM E (Chatzidakis [C, Thm. 2.2] or [FJ, 24.53]). If K is a countable Hilbertian field, then $\mu(N_e(K)) = 1$. Therefore, by Lemma B, $\mu(C_e(K)) = 1$.

It turns out that further generalization of Theorem E depends upon the roots

of unity which are contained in K. We denote the extension of a field F generated by all roots of unity by F_{cyc} .

THEOREM F. Let K be a Hilbertian field with prime field F. If $F_{cyc} \cap K$ is a finite extension of F, then $\mu(C_e(K)) = 1$.

THEOREM G (Main result). Let K_0 be a field of characteristic 0 that contains all roots of unity. Take a set T of cardinality \aleph_1 , algebraically independent over K_0 and let $K = K_0(T)$. Then neither $N_e(K)$ nor $C_e(K)$ nor their complements in $G(K)^e$ contain a set of positive measure. In particular neither $N_e(K)$ nor $C_e(K)$ is a meaurable set.

Since K is Hilbertian this result shows that one cannot remove the hypotheses of countability from Theorem E.

In the last section we complete Theorem C:

THEOREM H. Let K be a finitely generated extension of Q of transcendence degree n.

(a) The rank of each closed abelian subgroup of G(K) is at most n + 1.

(b) $\hat{\mathbf{Z}}^{n+1}$ is isomorphic to a closed subgroup of G(K).

Our results for the measure of the sets $N_e(K)$ and $C_e(K)$ over uncountable Hilbertian fields are incomplete in two ways: we deal entirely with purely transcendental extensions, and only in characteristic 0.

1. Fields with only finitely many roots of unity

A rather simple observation about fields with absolute Galois group isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ leads in this section to the proof of Theorem F. For a positive integer *n* we denote the *n*-th root of unity by ζ_n .

LEMMA 1.1 ([L2, p. 221]). Let K be a field and let n be an integer ≥ 2 . Assume for $a \in K$, $a \ne 0$ that $a \notin K^p$ for each prime divisor p of n and that if $4 \mid n$, then $a \notin -4K^4$. Then $X^n - a$ is irreducible in K[X].

LEMMA 1.2. Let K be a field with $G(K) \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Then char(K) $\neq p$ and $\zeta_{p^i} \in K$ for every positive integer i.

PROOF. Note first that $char(K) \neq p$, since otherwise G(K), as a pro-*p* group, would be projective and therefore free [R, p. 257] (a theorem of Witt). Every finite extension of K is an abelian *p*-group. Since $[K(\zeta_p):K]$ divides p-1, we have $\zeta_p \in K$.

Assume for $i \ge 2$ that $\zeta_{p^{i-1}} \in K$ but $\zeta_{p^i} \notin K$. Hence $[K(\zeta_{p^i}):K] = p$ (Lemma 1.1). Since $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ is a quotient of $\mathbb{Z}_p \times \mathbb{Z}_p$ there exists a cyclic extension $K(a^{1/p})$ of K, with $a \in K$, of degree p such that $K(\zeta_{p^i}) \cap K(a^{1/p}) = K$. In particular a is not a p-th power in $K(\zeta_{p^i})$. If p = 2 and $a \in -4K(\zeta_{2^i})^4$, then $\sqrt{a} \in \sqrt{-1}K(\zeta_{2^i})^2 \subseteq K(\zeta_{2^i})$, a contradiction. Conclude from Lemma 1.1 that $K(a^{1/p^i})$ is an abelian extension of K of degree p^i which is linearly disjoint from $K(\zeta_{p^i})$. In particular $K(a^{1/p^i})$ contains $\zeta_{p^i}a^{1/p^i}$ and therefore also ζ_{p^i} . This contradiction proves that $\zeta_{p^i} \in K$, as asserted.

Consider now a Hilbertian field K such that

(1) each of the fields $K(\sqrt{-1})$ and $K(\zeta_p)$, p a prime and $p \neq \text{char}(K)$, contains only finitely many roots of unity.

For example, if $Q_{cyc} \cap K$ is a finite extension of Q, then K satisfies (1). Theorem F is therefore a consequence of Propositions 1.3 and 1.4 below.

PROPOSITION 1.3. Let K be a Hilbertian field that satisfies (1). Then $\mu(C_1(K)) = 1$.

PROOF. For a prime $p \neq \operatorname{char}(K)$ let $K_{p^{\infty}} = K(\zeta_{p^i} \mid i = 1, 2, 3, ...)$. Also, let $\xi_p = \zeta_p$ for $p \neq 2$ and $\xi_2 = \zeta_4$. By assumption, there exists a positive integer m such that $\zeta_{p^m} \in K(\xi_p)$ but $\zeta_{p^{m+1}} \notin K(\xi_p)$. By Lemma 1.1, $\zeta_{p^{m+i}}$ generates a cyclic extension of $K(\xi_p)$ of degree p^i , i = 1, 2, 3, ... Hence $\mathscr{G}(K_{p^{\infty}}/K(\xi_p)) \cong \mathbb{Z}_p$.

The action of $\mathscr{G}(K_{p^{\infty}}/K)$ on the set $\{\zeta_{p^i} \mid i = 1, 2, 3, ...\}$ defines an embedding of $\mathscr{G}(K_{p^{\infty}}/K)$ into \mathbb{Z}_p^{\times} . Recall that $\mathbb{Z}_p^{\times} \cong A \oplus \mathbb{Z}_p$, where $A = \mathbb{Z}/(p-1)\mathbb{Z}$ if $p \neq 2$ and $A = \mathbb{Z}/2\mathbb{Z}$ if p = 2. Therefore $\mathscr{G}(K^{p^{\infty}}/K)$, being an infinite subgroup of \mathbb{Z}_p^{\times} , is isomorphic to a group $A_1 \oplus \mathbb{Z}_p$ with $A_1 \leq A$. (For p = 2 use that \mathbb{Z}_p is a principal ideal domain and [L2, p. 393].) If K_p is the fixed field of the subgroup A_1 of $\mathscr{G}(K_{p^{\infty}}/K)$, then $\mathscr{G}(K_p/K) \cong \mathbb{Z}_p$.

As K_p/K is an infinite extension the subset $S_1 = \bigcup_{p \neq char(K)} G(K_p)$ of G(K) is of measure 0. By Theorem A, the set T_2 of all $\sigma \in G(K)$ such that $\langle \sigma \rangle \cong \hat{\mathbf{Z}}$ is of measure 1. By the bottom theorem [FJ, p. 216], the set T_3 of all $\sigma \in G(K)$ for which $\tilde{K}(\sigma)$ is a proper finite extension of some field that contains K is of measure 0. It therefore suffices to prove that if

$$\sigma \in (G(K) - S_1) \cap T_2 \cap T_3.$$

then σ commutes with no element of $G(K) - \langle \sigma \rangle$.

Assume that there exists $\tau \in G(K) - \langle \sigma \rangle$ such that $\sigma \tau = \tau \sigma$. Then there is a prime p that divides $[\tilde{K}(\sigma) : \tilde{K}(\sigma, \tau)]$. Let a be the element of \hat{Z} with p th coordinate $a_p = 1$ and l th coordinate $a_l = 0$ for each prime $l \neq p$. Then, since

 $\sigma \in T_3$, the degree $[\tilde{K}(\sigma) : \tilde{K}(\sigma, \tau^a)]$ is an infinite power of p. As $\tilde{K}(\sigma)/\tilde{K}(\sigma, \tau^a)$ is an abelian extension with Galois group generated by one element, that group is isomorphic to \mathbb{Z}_p . It follows that

$$\mathscr{G}(\tilde{K}(\tau^a)\tilde{K}(\sigma)/\tilde{K}(\tau^a))\cong \mathbb{Z}_p$$

By the choice of a, $G(\tilde{K}(\tau^a))$ is a quotient of \mathbb{Z}_p . As each endomorphism of \mathbb{Z}_p is an automorphism [FJ, Prop. 15.3], $\tilde{K}(\tau^a)\tilde{K}(\sigma) = \tilde{K}$ and

$$G(\tilde{K}(\sigma, \tau^a)) \cong G(\tilde{K}(\tau^a)) \times G(\tilde{K}(\sigma)) \cong \mathbb{Z}_p \times \hat{\mathbb{Z}}.$$

Conclude that $G(\tilde{K}(\sigma^a, \tau^a)) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

By Lemma 1.2, $p \neq \operatorname{char}(K)$ and $\tilde{K}(\sigma^a, \tau^a)$ contains ζ_{p^i} for every positive integer *i*. Hence also $\tilde{K}(\sigma^a)$ contains ζ_{p^i} for all *i* and therefore $K_p \subseteq \tilde{K}(\sigma^a)$. However the degree $[K_p \tilde{K}(\sigma) : \tilde{K}(\sigma)]$ as a divisor of $[\tilde{K}(\sigma^a) : \tilde{K}(\sigma)]$ is on the one hand relatively prime to *p*, and as a divisor of $[K_p : K]$ is on the other hand a *p*-th power. It follows that $K_p \tilde{K}(\sigma) = \tilde{K}(\sigma)$ and therefore that $K_p \subseteq \tilde{K}(\sigma)$. This contradiction to $\sigma \notin S_1$ completes the proof of the Proposition.

Note that the assumption "K contains only finitely many roots of unity" does not imply (1). Indeed the theory of cyclotomic extensions asserts that $G(\mathbf{Q}_{p^{\infty}}/\mathbf{Q}) \cong A \oplus \mathbf{Z}_p$, where $A = \mathbf{Z}/(p-1)\mathbf{Z}$ if $p \neq 2$ and $A = \mathbf{Z}/2\mathbf{Z}$ if p = 2. Let K be the fixed field of A in $\mathbf{Q}_{p^{\infty}}$. As $\mathscr{G}(\mathbf{Q}_{p^{\infty}}/\mathbf{Q}(\xi_p)) \cong \mathbf{Z}_p$ the field $\mathbf{Q}(\xi_p)$ is not contained in K. Moreover, since $[\mathbf{Q}(\xi_p):Q] = |A|$ we have $K(\xi_p) = \mathbf{Q}_{p^{\infty}}$. So, $K(\xi_p)$ contains infinitely many roots of unity.

On the other hand the only roots of unity in $\mathbf{Q}_{p^{\infty}}$ are the $\pm \zeta_{p'}$'s. The field K contains only finitely many of them, since otherwise it would contain them all and therefore would coincide with $\mathbf{Q}_{p^{\infty}}$, a contradiction. Finally note that since $\mathscr{G}(K/\mathbf{Q}) \cong \mathbf{Z}_p$ the field K is Hilbertian [FJ, Prop. 15.5].

PROPOSITION 1.4. Let K be a Hilbertian field that satisfies (1) and let $e \ge 2$. Then $\mu(C_e(K)) = 1$.

PROOF. Let S be the set of all $\sigma \in G(K)^e$ such that $\langle \sigma_1 \rangle \cap \langle \sigma_2 \rangle = 1$ and $C_{G(K)}\langle \sigma_i \rangle = \langle \sigma_i \rangle$, i = 1, 2. By [J, Thm. 5.1] (or as an easy consequence of Theorem A) and by Proposition 1.3 the set S has measure 1.

Let $\sigma \in S$ and let $\tau \in C_{G(K)}(\langle \sigma \rangle)$. Then τ commutes with both σ_1 and σ_2 . Conclude that $\tau \in \langle \sigma_1 \rangle \cap \langle \sigma_2 \rangle = 1$. Thus $C_{G(K)}(\sigma) = \langle \sigma \rangle$, as desired.

2. Irreducible polynomials over rational function fields

Hilbert's irreducibility theorem takes a strong form over rational function fields $K = K_0(t)$: Separable irreducible polynomials $f \in K[X, Y]$ in two variables remain irreducible, if one variable is substituted by a + bt with $(a, b) \in K_0^2$ arbitrary, satisfying only one inequality $g(a, b) \neq 0$ [FJ, Thm. 12.9].

For the rest of this section we fix an infinite field K_0 and set $K = K_0(t)$. Define the rank of an infinite separable algebraic extension as the cardinality of the family of all finite subextensions.

LEMMA 2.1. Consider a tower $K \subseteq L \subseteq M$ of separable algebraic extensions with L/K finite and $\operatorname{rank}(M/K) < |K_0|$. Let f_1, \ldots, f_m be irreducible polynomials in $M[X_1, \ldots, X_r, Y]$ separable in Y. Let g_1, \ldots, g_n be irreducible polynomials in $L[X_1, \ldots, X_r, Y]$, separable in Y, and let $0 \neq h \in M[X_1, \ldots, X_r]$. Then there exists $\mathbf{x} \in K^r$ such that $f_i(\mathbf{x}, Y)$ is separable irreducible in M[Y], $i = 1, \ldots, m$, $g_j(\mathbf{x}, Y)$ is separable irreducible in L[Y], $j = 1, \ldots, n$ and $h(\mathbf{x}) \neq 0$.

PROOF. Do induction on r to assume that r = 1. Then follow the proof of [FJ, Lemma 16.32], using that a separable Hilbert subset of a finite separable extension of K contains a separable Hilbert subset of K. (The proof of this statement is a simple modifiction of the proof of [FJ, Cor. 11.7].)

PROPOSITION 2.2. Let M be a separable algebraic extension of K with rank $(M/K) < |K_0|$. Consider a finite Galois extension L of K with $G = \mathcal{G}(L/K)$. Suppose that G acts on a finite abelian group A. Let $A \rtimes G$ be the corresponding semidirect product and let $\alpha : A \rtimes G \rightarrow G$ be the projection map. Then there exists an epimorphism $\gamma : G(K) \rightarrow A \rtimes G$ such that $\alpha \circ \gamma = \operatorname{res}_L$ and the fixed field \hat{L} of $\operatorname{Ker}(\gamma)$ is linearly disjoint from M over $L_0 = M \cap L$.

PROOF. Let \hat{F}/E be a Galois extension such that $E = K(x_1, \ldots, x_r)$ with x_1, \ldots, x_r algebraically independent over K and \hat{F} is a regular extension of L for which there is an isomorphism $\theta: \mathscr{G}(\hat{F}/E) \to A \rtimes G$ such that $\alpha \circ \theta = \operatorname{res}_L$ [FJ, Lemma 24.46]. For $\mathbf{x} = (x_1, \ldots, x_r)$ find rings $R = K[\mathbf{x}, g(\mathbf{x})^{-1}]$ with $0 \neq g(\mathbf{x}) \in K[\mathbf{x}]$ and $\hat{R} = R[z]$ where $\hat{F} = E(z)$ and the discriminant of z over E is a unit of R. Then \hat{R}/R is a *ring cover*. In particular \hat{R} is the integral closure of R in \hat{F} [FJ, end of §5.2]. Let $f(\mathbf{x}, Z) = \operatorname{irr}(z, E)$ and $h(\mathbf{x}, Z) = \operatorname{irr}(z, L(\mathbf{x}))$. Since \hat{F}/L is regular h is absolutely irreducible.

Now choose $\mathbf{a} \in K^n$ such that $g(\mathbf{a}) \neq 0$, $f(\mathbf{a}, Z)$ is irreducible over K and $h(\mathbf{a}, Z)$ is irreducible over ML (Lemma 2.1). The K-specialization $\mathbf{x} \rightarrow \mathbf{a}$

extends to an epimorphism φ of \hat{R} onto a Galois extension $\hat{L} = K(\varphi(z))$ of K that contains L such that $\varphi(b) = b$ for each $b \in L$. Since $f(\mathbf{a}, Z)$ is irreducible over K it induces an isomorphism $\varphi^* : \mathcal{G}(\hat{L}/K) \to \mathcal{G}(\hat{F}/E)$ such that $\operatorname{res}_{\hat{F}/L} \circ \varphi^* = \operatorname{res}_{\hat{L}/L}$ [FJ, Lemma 5.5]. The map $\gamma = \theta \circ \varphi^* \circ \operatorname{res}_{\hat{L}}$ from G(K) satisfies $\alpha \circ \gamma = \operatorname{res}_{L}$. Also $[\hat{L}:L] = \operatorname{deg}(h(\mathbf{a}, Z)) = [M\hat{L}:ML]$. Hence \hat{L} is linearly disjoint from M over L_0 .

3. $N_e(K)$ is big

In this section we assume that K_0 is an uncountable field of characteristic 0 and let $K = K_0(t)$ be the field of rational functions in t over K_0 . Our goal is to show that for each $e \ge 1$ the complement of $N_e(K)$ contains no set of positive measure, i.e., $N_e(K)$ is a "big" set. This will give one half of Theorem G. The proof is based on the following version of [FJ, Lemma 16.30].

LEMMA 3.1. Let G be a profinite group and let S be a subset of G^e . Suppose that $\mu_H(r(S)) = 1$ for each epimorphism $r: G \to H$ onto a profinite group H of rank $\leq \aleph_0$. (Here we also use r to denote the function from G^e to H^e induced by $r: G \to H$.) Then $G^e - S$ contains no set of positive measure. In particular this holds if $r(S) = H^e$ for each H as above.

PROOF. Let \overline{B} be a meaurable subset of $G^e - S$. Then there exists a set Bwith $B \subseteq \overline{B}$ such that $\mu(\overline{B} - B) = 0$ which belongs to the σ -algebra generated by all open-closed subsets of G^e [FJ, Lemma 16.29]. An induction on structure shows that B can be found in a σ -algebra \mathscr{A} generated by countably many open-closed sets, A_1, A_2, A_3, \ldots . For each *i* there is a normal open subgroup N_i of G and there is a finite subset T_i of G^e such that $A_i = \bigcup_{\tau \in T_i} \tau N_i^e$. The group $N = \bigcap_{i=1}^{\infty} N_i$ is normal and closed in G and $\operatorname{rank}(G/N) \leq \aleph_0$. Let $r : G \to G/N$ be the canonical epimorphism. Clearly $r^{-1}(r(A_i)) = A_i$, $i = 1, 2, 3, \ldots$. Since the collection of all $A \in \mathscr{A}$ with $A = r^{-1}(r(A))$ is closed under taking complements and under countable unions it coincides with \mathscr{A} . In particular $r^{-1}(r(G^e - B)) = G^e - B$. Since $G^e - B \supseteq S$ we have $r(G^e - B) \supseteq r(S)$ and $\mu_H(r(G^e - B)) \ge \mu_H(r(S)) = 1$. Hence $\mu(G^e - B) = \mu_H(r(G^e - B)) = 1$. Conclude that $\mu(\overline{B}) = \mu(B) = 0$, as desired.

Our first application of Lemma 3.1 depends upon the following corollary of Proposition 2.2.

LEMMA 3.2. Let M be a Galois extension of K with $\operatorname{rank}(M/K) \leq \aleph_0$ and let $\sigma \in \mathscr{G}(M/K)^e$. Then K has a Galois extension M' which contains M with

rank($\mathscr{G}(M'/K)$) $\leq \aleph_0$ and there exists an extension $\tau \in \mathscr{G}(M'/K)^e$ of σ such that $N_{\mathscr{G}(M'/K)}(\tau) = \langle \tau \rangle$.

PROOF. Present M as a union $M = \bigcup_{i=1}^{\infty} K_i$ of an ascending sequence $K_1 \subseteq K_2 \subseteq \cdots$ of finite Galois extensions of K. Let $\sigma_i = \operatorname{res}_{K_i}(\sigma)$, $i = 1, 2, 3, \ldots$. Inductively construct an ascending sequence $L_1 \subseteq L_2 \subseteq \cdots$ of finite Galois extensions of K and e-tuples $\tau_i \in \mathscr{G}(L_i/K)^e$, $i = 1, 2, 3, \ldots$ such that

- (a) $M \cap L_i = K_i$ and $\operatorname{res}_{K_i}(\tau_i) = \sigma_i$,
- (b) τ_{i+1} extends τ_i , i = 1, 2, 3, ..., and
- (c) $\operatorname{res}_{L_i}(N_{\mathscr{G}(L_{i+1}/K)}\langle \tau_{i+1}\rangle) = \langle \tau_i \rangle.$

Indeed suppose that we have already constructed L_i and τ_i for i = 1, ..., nsuch that they satisfy conditions (a)-(c). In particular for $G = \mathscr{G}(K_{n+1}L_n/K)$ there exists $\rho \in G^e$ that extends both σ_{n+1} and τ_n , and $M \cap K_{n+1}L_n = K_{n+1}$. Choose an integer $m \ge 2$ and let G operate on the group ring $(\mathbb{Z}/m\mathbb{Z})[G]$ by multiplication from the right. By Proposition 2.2, K has a Galois extension L_{n+1} that contains $K_{n+1}L_n$ such that $M \cap L_{n+1} = K_{n+1}$ and there exists a commutative diagram

in which the vertical arrows are isomorphisms. Lemma 24.52 of [FJ] states that ρ extends to $\tau_{n+1} \in \mathscr{G}(L_{n+1}/K)$ such that $\operatorname{res}_{K_{n+1}L_n}(N_{\mathscr{G}(L_{n+1}/K)}\langle \tau_{n+1}\rangle) = \langle \rho \rangle$. (The close "*H* into G_0 " at the end of that lemma should be corrected to "*H* onto G_0 ".) In particular τ_{n+1} extends both σ_{n+1} and τ_n , and $\operatorname{res}_{L_n}(N_{\mathscr{G}(L_{n+1}/K)}\langle \tau_{n+1}\rangle) = \langle \tau_n \rangle$. This completes the induction.

Let $M' = \bigcup_{i=1}^{\infty} L_i$ and let τ be the unique element of $\mathscr{G}(M'/K)^e$ that extends all τ_i . Then M' is a Galois extension of K of rank $\leq \aleph_0$, τ extends σ and $N_{\mathscr{G}(M'/K)}(\tau) = \langle \tau \rangle$. Indeed if $\kappa \in N_{\mathscr{G}(M'/K)}(\tau)$, then $\operatorname{res}_{L_{n+1}}(\kappa) \in N_{\mathscr{G}(L_{n+1}/K)}(\tau_{n+1})$. Hence $\operatorname{res}_{L_n}(\kappa) \in \langle \tau_n \rangle$, $n = 1, 2, 3, \ldots$ Conclude that $\kappa \in \langle \tau \rangle$.

LEMMA 3.3. Suppose that $|K_0| = \aleph_1$ and let L/K be a Galois extension of rank $\leq \aleph_0$. Then each $\sigma_1 \in \mathscr{G}(L/K)^e$ extends to $\sigma \in G(K)^e$ such that $\aleph_{G(K)} \langle \sigma \rangle = \langle \sigma \rangle$.

PROOF. Order the collection of all finite Galois extensions of K in a transfinite sequence $\{K_{\alpha} \mid 1 \leq \alpha < \aleph_1\}$. Apply Lemma 3.2 in a transfinite induction to define for each ordinal $\alpha < \aleph_1$ a Galois extension L_{α} and

 $\sigma_{\alpha} \in \mathscr{G}(L_{\alpha}/K)^{e} \text{ such that (a) } L_{1} = L, \text{ (b) } \operatorname{rank}(L_{\alpha}/K) = \aleph_{0}, \text{ (c) } \alpha < \beta \text{ implies that } K_{\alpha} \subseteq L_{\beta}, L_{\alpha} \subseteq L_{\beta} \text{ and } \sigma_{\beta} \text{ extends } \sigma_{\alpha}, \text{ and (d) } N_{\mathscr{G}(L_{\alpha}/K)} \langle \sigma_{\alpha} \rangle = \langle \sigma_{\alpha} \rangle.$ Then $K_{s} = \bigcup_{\alpha < \aleph_{1}} L_{\alpha} \text{ and } \sigma = \lim_{\alpha \to \infty} \sigma_{\alpha} \text{ extends } \sigma_{1} \text{ and satisfies } N_{G(K)} \langle \sigma \rangle = \langle \sigma \rangle.$

PROPOSITION 3.4. Let $K = K_0(t)$ be the field of rational functions in t over a field K_0 of cardinality \aleph_1 . Then $G(K)^e - N_e(K)$ and $G(K)^e - C_e(K)$ contain no set of positive measure.

PROOF. By Lemma B it suffices to prove only the assertion about $N_e(K)$. Apply Lemma 3.1 on the set $S = N_e(K)$. Consider a Galois extension L/K of rank $\leq \aleph_0$. By Lemma 3.3, res_L $S = \mathscr{G}(L/K)^e$. Hence, $G^e - S$ contains no set of positive measure.

4. $N_e(K)$ is small

We apply the technique of power series fields to complete the proof of Theorem G.

Let K be a field of characteristic 0. For a transcendental element t over K choose for each positive integer e an e-th root $t^{1/e}$ of t such that whenever d divides e, $(t^{1/e})^{e/d} = t^{1/d}$. Puiseux's theorem states that the algebraic closure of the field of power series $\tilde{K}((t))$ is the union of all fields $E_e = \tilde{K}((t^{1/e}))$. In order to obtain the algebraic closure of the complete discrete valued field E = K((t))we have to distinguish between unramified and purely ramified extensions. First note that each algebraic extension L of E is Henselian with residue field of characteristic 0. Therefore, if L' is a finite extension of L, then [L': L] is equal to the product of the ramification index and the residue degree [A, Prop. 15]. Now observe that $E_{ur} = \tilde{K}E$, as a separable constant field extension of E, is unramified with an algebraically closed residue field \tilde{K} . Hence, each algebraic extension of E_{ur} is purely unramified. On the other hand, $F = \bigcup_{e=1}^{\infty} E(t^{1/e})$ is a purely ramified extension of E with a divisible value group, Q. Hence, each algebraic extension of F is unramified. It follows that $E_{ur} \cap F = E$ and $E_{ur}F =$ \tilde{E} . For each *e* the field $E_{ur}(t^{1/e})$ is a cyclic extension of *E* of degree *e*. Therefore $G(E_{uv}) = \hat{Z}$. As K is algebraically closed in E and therefore also in F this yields a presentation of G(E) as a semidirect product of G(K) and $\hat{\mathbf{Z}}$.

PROPOSITION 4.1. Let K be a field of characteristic 0 and let E = K((t)). (a) The field $E_{ur} = \tilde{K}E$ is the maximal unramified extension of E.

(b) The field $F = \bigcup_{e=1}^{\infty} E(t^{1/e})$ is a totally unramified extension of E,

 $ord(F^{\times}) = \mathbf{Q}$, each algebraic extension of F is unramified, and K is algebraically closed in F.

- (c) $E_{ur} \cap F = E$ and $E_{ur}F = \tilde{E}$.
- (d) $G(E_{ur}) = \hat{\mathbf{Z}}$ and $G(F) \cong G(K)$.
- (e) G(E) is the semidirect product of G(K) and $\hat{\mathbf{Z}}$.

COROLLARY 4.2. Let K be a field of characteristic 0 that contains all roots of unity.

(a) $G(K((t))) \cong G(K) \times \hat{\mathbf{Z}}$.

(b) There exists an isomorphism $\alpha : G(K) \times \hat{\mathbb{Z}} \to G(K(t) \cap K((t)))$ such that res_K $\circ \alpha$ is the projection map of $G(K) \times \hat{\mathbb{Z}}$ onto G(K).

PROOF. In this case F, of Proposition 4.1, is a Galois extension of E.

PROPOSITION 4.3. Let T be an uncountable set, algebraically independent over a field K_0 of characteristic 0 that contains all roots of unity. Let $K = K_0(T)$. Then $C_e(K)$ and $N_e(K)$ contain no set of positive measure.

PROOF. By Lemma B it suffices to prove that $C_e(K)$ contains no set of positive measure. We apply Lemma 3.1 on $S = G(K)^e - C_e(K)$ and consider an epimorphism $r: G(K) \to H$ onto a profinite group H of rank $\leq \aleph_0$. Denote the fixed field of Ker(r) by L. Then L/K is a Galois extension of rank $\leq \aleph_0$. Hence T has a countable subset T_1 for which there exists a Galois extension L_1 of $K_1 = K_0(T_1)$ such that $L_1K = L$. Choose $t \in T - T_1$ and let $K_2 = K_0(T - \{t\})$ and $L_2 = L_1K_2$. Then $K = K_2(t)$. Assume without loss that r is the epimorphism res_L: $G(K) \to \mathscr{G}(L_2/K_2)$.

By Corollary 4.2(b) each $\sigma \in \mathscr{G}(L_2/K_2)^e$ extends to $\tau \in G(K)^e$ for which there exists $\rho \in G(K) - \langle \tau \rangle$ such that $\tau_i \rho = \rho \tau_i$, i = 1, ..., e. Thus $\rho \in C_{G(K)} \langle \tau \rangle - \langle \tau \rangle$. Therefore $\tau \in S$.

Conclude from Lemma 3.1 that $C_e(K)$ contains no set of positive measure.

Combine now Propositions 3.4 and 4.3 to achieve the main result of this work.

THEOREM 4.4. Let K_0 be a field of characteristic 0 that contains all roots of unity. Take a set T of cardinality \aleph_1 , algebraically independent over K_0 and let $K = K_0(T)$. Then neither $N_e(K)$ nor $C_e(K)$ nor their complements in $G(K)^e$ contain a set of positive measure. In particular neither $N_e(K)$ nor $C_e(K)$ is a measurable set.

5. Abelian subgroups of G(K)

We give in this section some details about the possible ranks of closed abelian subgroups of absolute Galois groups of finitely generated extensions of \mathbf{Q} . First we prove the second part of Theorem C.

LEMMA 5.1. Let N be either an algebraically closed or a real closed field. Let x be transcendental over N. Then every abelian closed subgroup C of G(N(x)) is procyclic.

PROOF. Suppose first that N is algebraically closed. As the cohomological dimension of G(N) is 0, the cohomological dimension of G(N(x)) is 1 [R, p. 276]. In other words G(N(x)) is projective. (Actually G(N(x)) is free. But this is a deeper theorem.) It follows that C is projective [FJ, Cor. 20.16]. Hence, for each p, the p-Sylow subgroup C_p of C is pro-p-free [FJ, Prop. 20.47]. Since C_p is abelian it must be procyclic. Conclude that C is also procyclic.

Now assume that N is real closed. If C is not procyclic, it contains a closed subgroup B isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$, for some prime p [G, Satz 1.13]. By Lemma 1.2, the fixed field of B contains $\sqrt{-1}$ and therefore also \tilde{N} . This contradicts the first part of the Lemma.

PROPOSITION 5.2. For almost all $\sigma \in G(\mathbf{Q})^e$ each closed abelian subgroup C of $G(\tilde{\mathbf{Q}}(\sigma)(x))$, with x transcendental over $\tilde{\mathbf{Q}}(\sigma)$, is procyclic.

PROOF. Each of the extensions $\mathbf{Q}_{p^{\infty}} = \mathbf{Q}(\zeta_{p^i} | i = 1, 2, 3, ...)$ is infinite. Hence $\mu(\bigcup G(\mathbf{Q}_{p^{\infty}})^e) = 0$. Let $\sigma \in G^e - G(\mathbf{Q}_{p^{\infty}})^e$ and let $F = \tilde{\mathbf{Q}}(\sigma)(x)$. Assume that C is a closed abelian nonprocyclic subgroup of G(F). As in the second paragraph of the proof of Lemma 5.1, F and therefore $\tilde{\mathbf{Q}}(\sigma)$ contain ζ_{p^i} , i = 1, 2, 3, ... for some prime p. Thus $\sigma \in G(\mathbf{Q}_{p^{\infty}})^e$, a contradiction.

PROPOSITION 5.3 (Haran). Let K be an extension of \mathbf{Q} of transcendence degree n. Then the rank of each closed abelian subgroup of G(K) is bounded by n + 1.

PROOF. If n = 0, then K is an algebraic extension of Q, and Theorem C applies.

For n > 0 we may assume without loss that $K = K_0(x)$ for some extension K_0 of **Q** of transcendence degree n - 1 and a transcendental element x over K_0 . Let B be a closed abelian closure of G(K). The short exact sequence

$$1 \longrightarrow G(\tilde{K}_0(x)) \longrightarrow G(K) \xrightarrow{\operatorname{res}} G(K_0) \longrightarrow 1$$

induces a short exact sequence of abelian profinite groups $1 \rightarrow C \rightarrow B \rightarrow A \rightarrow 1$. The group A is contained in $G(K_0)$. By an induction hypothesis on n, rank $(A) \leq n$. Lemma 5.1 asserts that C, as an abelian closed subgroup of $G(\tilde{K}_0)$, is procyclic. Hence rank $(B) \leq n + 1$. This completes the induction and the proof of the proposition.

Now we show that the bound in Proposition 5.3 cannot be improved.

PROPOSITION 5.4. Let K be a finitely generated extension of Q of transcendence degree n. Then $\hat{\mathbf{Z}}^{n+1}$ is isomorphic to a closed subgroup of G(K).

PROOF. The field $L = \mathbf{Q}_{ab} K$ is finitely generated over \mathbf{Q}_{ab} and of transcendence degree *n*. We prove by induction on *n* that $\hat{\mathbf{Z}}^{n+1}$ is even isomorphic to a closed subgroup of G(L).

Indeed for $n = 0, L = \mathbf{Q}_{ab}$ is Hilbertian [FJ, Thm. 15.6]. Hence, by Theorem A, almost each $\sigma \in G(L)$ generates a subgroup isomorphic to $\hat{\mathbf{Z}}$. For n > 0 choose a transcendental basis t_1, \ldots, t_n for L/\mathbf{Q}_{ab} and let $E_0 = \mathbf{Q}_{ab}(t_1, \ldots, t_{n-1})$ and $E = E_0(t_n)$. By the induction hypothesis $\hat{\mathbf{Z}}^n$ is isomorphic to a closed subgroup of $G(E_0)$. Since E contains all roots of unity Corollary 4.4(b) implies that $\hat{\mathbf{Z}}^{n+1}$ is isomorphic to a closed subgroup of G(E). As $G(L) \cap A$ is an open subgroup of A it is also isomorphic to $\hat{\mathbf{Z}}^{n+1}$. The induction is complete.

References

[A] J. Ax, A mathematical approach to some problems in number theory, AMS Proc. Symp. Pure Math. XX (1971), 161–190.

[C] Z. Chatzidakis, Some properties of the absolute Galois group of a Hilbertian field, Isr. J. Math. 55 (1986), 173–183.

[FJ] M. Fried and M. Jarden, *Field Arithmetic*, Ergebnisse der Mathematik III 11, Springer-Verlag, Heidelberg, 1986.

[G] W.-D. Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist, J. Number Theory 1 (1969), 346–374.

[J] M. Jarden, Algebraic extensions of finite corank of Hilbertian fields, Isr. J. Math. 18 (1974), 279-307.

[Ja] G. J. Janusz, Algebraic Number Fields, Academic Press, New York, 1973.

[L1] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, 1970.

[L2] S. Lang, Algebra, Addison-Wesley, Reading, 1965.

[Le] S. Lefschetz, Algebraic Geometry, Princeton University Press, Princeton, 1953.

[R] L. Ribes, Introduction to pro-finite groups and Galois cohomology, Queens Papers in Pure and Applied Mathematics 24, Queens's University, Kingston, 1970.